1. Convert $(321)_{10}$ to base 7 Solution: We repeatedly divide by 7 until the quotient is zero:

	Quotient		Remainder
$321 \div 7 =$	45	+	6
$45 \div 7 =$	6	+	3
$6 \div 7 =$	0	+	6

By taking the remainders in reverse order, we find that: $(321)_{10} = (636)_7$

2. Convert $(214)_{10}$ to base 8 Solution: We repeatedly divide by 8 until the quotient is zero:

	Quotient		Remainder
$214 \div 8 =$	26	+	6
$26 \div 8 =$	3	+	2
$3 \div 8 =$	0	+	3

By taking the remainders in reverse order, we find that: $(214)_{10} = (326)_8$

3. Convert $(234)_5$ to base 10

Moving from left to right, we have: $(234)_5 = (2 \cdot 5^2) + (3 \cdot 5^1) + (4 \cdot 5^0) = 50 + 15 + 4 = (69)_{10}$

4. Working in base 8, find 267 · 23 Tip: Carry the Quotient

тıр.	Carry the Quotient	
	267	multiplicand
•	23	$\operatorname{multiplier}$
	25	$7 \cdot 3$
+	160	$+7 \cdot 20$
+	220	$+60 \cdot 3$
+	1400	$+60 \cdot 20$
+	600	$+200 \cdot 3$
+	4000	$+200 \cdot 20$
	6625	product

The student here used this kind of multiplication 23.267 = (20 + 3)(200 + 60 + 7) = 3.200 + 3.60 + 3.7 + 20.200 + 20.60 + 20.7 = (now add and multiply mod 8, sowrite down the remainder (mod 8) and carry $the quotient) = (6625)_8... I guess this$ method is LONG

5. Working in base 16, find FAB2 - 987E

Tip: Borrow the base

FAB2 - 987E = (F000 - 9000) + (A00 - 800) + (A0 - 70) + (18 - E) = 6234

	FAB2	minuend
-	987E	subtrahend
	6234	difference

See my comment above...

HW 18/9/2018 Section 13 Hessa Almheiri -1) Convert. 326 to base 8. Step 1: Divicle until quadient = 0. $x \neq 0$ 5 0 estep y = 0 5 0 estep y = 0 5 y = 0 7 y = 0		
HW 18/9/2018 section 13 -1) Convert. 32.6 to base 8. step 1: Divide until quotient =0. $ \frac{4}{10} = \frac{5}{0} = \frac{6}{5} $ Step 2: read remainders from right to left. 32.6 = (50.6) g -2.1 Convert 42.2 to base 16 A B C D E F 2.1 Convert 42.2 to base 16 A B C D E F 2.2 L I 0 convert 42.2 to base 16 A B C D E F 2.2 L I 0 convert 42.2 to base 16 A B C D E F 2.2 L I 0 convert 42.2 to base 16 A B C D E F 2.2 L I 0 convert 42.2 to base 16 A B C D E F 2.2 L I 0 convert 42.2 to base 16 A B C D E F 2.2 L I 0 convert 42.2 to base 16 A B C D E F 2.2 L I 0 convert 42.2 to base 16 A B C D E F 2.2 L I 0 convert 42.2 to base 16 A B C D E F 2.2 L I 0 convert 42.2 to base 16 A B C D E F 2.2 L I 0 convert 42.2 to base 16 A B C D E F 2.2 L I 0 convert 42.2 to base 16 A B C D E F 2.2 L I 0 convert 42.2 to base 16 A B C D E F 2.2 L I 0 to the form 15 H B C D E F 2.2 L I 0 to the form 15 H B C D E F 2.2 L I 0 10 A B C D E F 4.2 C (216.3) to base 10 A B C D E F (2.6 A B C D) to B C C E F (3.7 S B) to H B C D E F (4.1 4 16 F C C H C C H C C C C H C C H C C H C C H C C H C C H C C H C C H C C H C C H C C		Hessa Almheiri
1) Convert 326 to base 8. Step 1: Divide until quotient = 0. $\frac{1}{6}$ 40 5 0 estep $\frac{1}{326}$ $\frac{1}{5}$ $\frac{1}{90}$ $\frac{1}{5}$ $\frac{3}{6}$ $\frac{40}{5}$ $\frac{2}{5}$ $\frac{3}{6}$ $\frac{40}{5}$ $\frac{2}{5}$ $\frac{3}{6}$ $\frac{40}{5}$ $\frac{2}{5}$ $\frac{1}{6}$ $\frac{1}{5}$	-HW 18/9/2018 Section 13	
$\frac{step 1: Divide until quotient = 0}{2}$ $\frac{1}{24} \frac{10}{10} = \frac{5}{5} = \frac{5}{20}$ $\frac{1}{20} = \frac{10}{5} = \frac{5}{5}$ $\frac{10}{5} = \frac{10}{5} = 1$	ISTINIO SCHON IS	
$\frac{step 1: Divide until quotient = 0}{2}$ $\frac{1}{240} = \frac{5}{5} = \frac{0}{5} + step}$ $\frac{1}{2} = \frac{1}{6} = \frac{1}{5} = $	in the second	
$\frac{step 1: Divide until quotient = 0}{2}$ $\frac{1}{240} = \frac{5}{5} = \frac{0}{5} + step}$ $\frac{1}{2} = \frac{1}{6} = \frac{1}{5} = $	1) (onvert, 326 to base	8.
$\frac{v}{90} = \frac{1}{90} $		
$\frac{1}{6} \frac{40}{6} \frac{5}{5}$ $\frac{1}{6} \frac{1}{6} \frac{5}{6} \frac{5}{5}$ $\frac{1}{5} \frac{5}{5} \frac{5}{5}$	Slep 1: Divide until quotient =	<u> </u>
$\frac{1}{6} \frac{40}{6} \frac{5}{5}$ $\frac{1}{5} \frac{1}{5} \frac$	<u> </u>	6 stop
$\frac{1}{6} \frac{40}{6} \frac{5}{5}$ $\frac{1}{5} \frac{1}{5} \frac$	\$ 326 \$40 \$5	
$\begin{array}{c} stip 2: read remainders from right to kft. \\ 326 = (506)_{g} \\ \hline \\ \hline \\ 2) \ convert 422 \ to base 16 & A B C D E F \\ \hline \\ \hline \\ 2 & 1 & 0 & cstop & W & 1 & 1 & 1 & 1 \\ \hline \\ \hline \\ 2 & 1 & 0 & cstop & W & 1 & 1 & 1 & 1 \\ \hline \\$	320 40 0	and the second se
$326 = (506)_{g}$ 2) convert 422 to base 16 A B C D E F 2 ¹ 0 c stop 10 11 12 13 14 15 15 2 2 16 26 16 1 416 16 -0 -6 10 1 416 -0 -6 10 1 412 = (1 A 6)_{16} 3) convert (2163)_{1} to base 10 = 2 x 7 ³ + 1 x 7 ² + 6 x 7 ² + 3 x 7 ² = (780)_{10} 4) (A B & A)_{16} A(10) + 16 = 26 - 15 = 11 (mod 16) + 11 = B - (2 8 3 F)_{16} 11 - 3 = 8 (mod 16) = 8 - (8 3 8 B)_{10} 11 - 3 = 8 (mod 16) = 8 - (8 3 8 B)_{10} 11 - 3 = 8 (mod 16) = 8 - (9 A B 3)_{16} 3 + 16 = 19 (mod 16) = 12 (6my 4) (12) - (1 4)_{16} 4y (19 = 76 (mod 16) = 12 (6my 4) (12) - (1 4)_{16} 4y (19 = 76 (mod 16) = 12 (6my 2) 6 (12) - (1 5) - 2 0 (A B 3)_{16} 3 + 16 = 14 (mod 16) = 12 (6my 2) 6 (12) - (1 4)_{16} 4y (19 = 76 (mod 16) = 12 (6my 2) 6 (12) - (1 5) - 2 0 (2 6 7 6 (16)) = 10 (6my 2) 12 (12) - (1 5) - 2 0 (10) - 10 (6my 2) 12 (12) (12) 12 (6 0 5	
$326 = (506)_{g}$ 2) convert 422 to base 16 A B C D E F 24 1 0 ester 10 11 12 13 14 15 15 422 16 26 16 1 416 16 0 6 10 1 416 16 0 4122 = (1 A 6)_{16} 3) convert (2163)_{7} to base 10 = 2 x 7 ³ + 1 x 7 ² + 6 x 7 ³ + 3 x 7 ² = (780)_{10} 4) (A B & A)_{16} A(10) + 16 = 26 - 15 = 11 (mod 16) = 11 = B (2 g 3 F)_{16} 11 - 3 = 8 (mod 16) = 8 (8 3 g B)_{16} 11 - 3 = 8 (mod 16) = 8 (9 3 g B)_{16} 11 - 3 = 8 (mod 16) = 8 (9 3 g B)_{16} 11 - 3 = 8 (mod 16) = 12 (formy 4) (12) (1 4) 16 4 y = 76 (mod 16) = 12 (formy 4) (12) 4 A B C C 4 0 + 16 = 76 (mod 16) = 12 (formy 4) (12) A B 3 0 40 + 12 = 42 (mod 16) = 12 (formy 2) 12 (10 5 5 5 0) (comy 2) 12 (ation racial man ' have B	whit to ket
$ \frac{2) \text{ convert } 422 \text{ to base } 16 \qquad A & B & C & D & E & F \\ \frac{2 \text{ l}}{10 & 1 & 0} & c & c & c & c & c & c & c & c & c & $		right to Reci,
$ \frac{2) \text{ convert } 422 \text{ to base } 16 \qquad A & B & C & D & E & F \\ \frac{2 \text{ l}}{10 & 1 & 0} & c & c & c & c & c & c & c & c & c & $	$326 = (506)_8$	
$\frac{25}{16422} + \frac{1}{16} + \frac{1}{$		
$\frac{25}{16422} + \frac{1}{16} + \frac{1}{10} + \frac{1}{$		
$\frac{25}{16422} + \frac{1}{16} + \frac{1}{10} + \frac{1}{$	2) convert 422 to base	16 ABCDEF
$\frac{169422}{416} = \frac{16}{10} = \frac{1}{10}$ $\frac{416}{6} = \frac{16}{10} = \frac{1}{10}$ $\frac{416}{6} = \frac{16}{10} = \frac{1}{10}$ $\frac{4122}{6} = (1 \ A \ 6)_{16}$ $\frac{422}{6} = (1 \ A \ 6)_{16}$ $\frac{3) (\text{convert} (2163)_{7} + 6 \ x7' + 3 \ x7'}{6}$ $= (780)_{10}$ $\frac{8}{26}$ $\frac{4) (A \ B \ \xi \ A)_{16}}{(8 \ 3 \ 8 \ 6)_{16}} = \frac{16}{26 - 15} = 11 \ (\text{mod } 16) = 11 = 8$ $\frac{(2 \ 8 \ 3 \ 8 \ 6)_{16}}{(8 \ 3 \ 8 \ 6)_{16}} = \frac{11 - 3 = 8 \ (\text{mod } 16) = 8}{(8 \ 3 \ 8 \ 6)_{16}}$ $\frac{4}{5} = \frac{2}{20} (\frac{A \ B \ 3)_{16}}{4} = \frac{3 + 16 = 14}{10} = \frac{1}{10} = \frac{16}{10} = \frac{16}{10}$		
$\frac{416}{6} \frac{16}{10} \frac{10}{1}$ $\frac{416}{10} \frac{16}{10} \frac{10}{1}$ $\frac{412}{6} \frac{16}{10} \frac{10}{1}$ $\frac{412}{6} \frac{16}{10} \frac{10}{1}$ $\frac{412}{6} \frac{10}{10} \frac{10}{10}$ $\frac{10}{10} \frac{10}{10} \frac{10}{1$		E Stop
$\frac{422 = (1 A 6)_{16}}{422 = (1 A 6)_{16}}$ $\frac{3) \text{ convert } (2163)_{7} \text{ to back } 10}{(2163)_{7} + 6 \times 7 + 3 \times 7^{\circ}}$ $= (780)_{10}$ $\frac{8}{(780)_{10}}$ $\frac{4) (A B (A)_{16}}{(8 3 R)_{16}} = A(10) + 16 = 26 - 15 = 11 \pmod{16} = 11 = 8$ $= (2 8 3 F)_{16} = 11 - 3 = 8 \pmod{16} = 8$ $= (8 3 8 B)_{10} = 11$ $= (1 4)_{16} = 3 + 16 = 19$ $= (1 4)_{16} = 3 + 16 = 19$ $= (1 4)_{16} = 3 + 16 = 19$ $= (1 4)_{16} = 3 + 16 = 19$ $= (1 4)_{16} = 3 + 16 = 19$ $= (1 4)_{16} = 3 + 16 = 19$ $= (1 2)_{16} = 3 + 16 = 19$ $= (1 2)_{16} = 3 + 16 = 19$ $= (1 2)_{16} = 3 + 16 = 19$ $= (1 2)_{16} = 3 + 16 = 19$ $= (1 2)_{16} = 3 + 16 = 10$ $=$		
$\frac{422 = (1 A 6)_{16}}{(2 + 2 + 2)_{16}}$ $\frac{3) (convert (2163)_{7} + b base 10}{(2 + 2 + 3 + 7)^{2} + (5 + 7)^{2$		
3) convert $(2163)_{7}$ to base 10 $= 2 \times 7^{3} + 1 \times 7^{2} + 6 \times 7^{7} + 3 \times 7^{9}$ $= (780)_{10}$ 4) (A B & A)_{1k} A(10) + 16 = 26 - 15 = 11 (mod 16) = 11 = B $= (2 \times 3 \times 5)_{1k} 11 - 3 = 8 (mod 16) = 8$ $= (8 \times 3 \times 5)_{1k} 11 - 3 = 8 (mod 16) = 8$ $= (8 \times 3 \times 5)_{1k} 11 - 3 = 8 (mod 16) = 8$ $= (1 \times 4)_{1k} 4 \times 19 = 76 (mod 16) = 12 (kerry 4) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 76 (mod 16) = 12 (kerry 4) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 76 (mod 16) = 12 (kerry 4) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 76 (mod 16) = 12 (kerry 4) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 76 (mod 16) = 12 (kerry 4) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 44 (mod 16) = 12 (kerry 4) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 44 (mod 16) = 10 (kerry 2) = 10$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$	6 10 1	
3) CONVERT $(2163)_{7}$ to base 10 $= 2 \times 7^{3} + 1 \times 7^{2} + 6 \times 7^{7} + 3 \times 7^{9}$ $= (780)_{10}$ 4) (A B & A)_{1k} A(10) + 16 = 26 - 15 = 11 (mod 16) = 11 = B $= (2 \times 3 \times 5)_{1k} 11 - 3 = 8 (mod 16) = 8$ $= (8 \times 3 \times 5)_{1k} 11 - 3 = 8 (mod 16) = 8$ $= (8 \times 3 \times 5)_{1k} 11 - 3 = 8 (mod 16) = 8$ $= (1 \times 4)_{1k} 4 \times 19 = 76 (mod 16) = 12 (kerry 4) (12)$ $= (1 \times 4)_{1k} 4 \times 19 = 76 (mod 16) = 12 (kerry 4) (12)$ $= (1 \times 4)_{1k} 4 \times 19 = 76 (mod 16) = 12 (kerry 4) (12)$ $= (1 \times 4)_{1k} 4 \times 19 = 76 (mod 16) = 12 (kerry 4) (12)$ $= (1 \times 4)_{1k} 4 \times 19 = 76 (mod 16) = 12 (kerry 4) (12)$ $= (1 \times 4)_{1k} 4 \times 19 = 44 (mod 16) = 12 (kerry 4) (12)$ $= (1 \times 4)_{1k} 4 \times 19 = 44 (mod 16) = 10 (kerry 2) = 12 (kerry 4) (12)$ $= (1 \times 4)_{1k} 4 \times 19 = 42 (mod 16) = 10 (kerry 2) = 12 (kerry 4) (12)$ $= (1 \times 4)_{1k} 4 \times 19 = 42 (mod 16) = 10 (kerry 2) = 12 (kerry 4) (12)$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 4) (12) = 10 (kerry 4) ($		
3) convert $(2163)_{7}$ to base 10 $= 2 \times 7^{3} + 1 \times 7^{2} + 6 \times 7^{7} + 3 \times 7^{9}$ $= (780)_{10}$ 4) (A B & A)_{1k} A(10) + 16 = 26 - 15 = 11 (mod 16) = 11 = B $= (2 \times 3 \times 5)_{1k} 11 - 3 = 8 (mod 16) = 8$ $= (8 \times 3 \times 5)_{1k} 11 - 3 = 8 (mod 16) = 8$ $= (8 \times 3 \times 5)_{1k} 11 - 3 = 8 (mod 16) = 8$ $= (1 \times 4)_{1k} 4 \times 19 = 76 (mod 16) = 12 (kerry 4) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 76 (mod 16) = 12 (kerry 4) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 76 (mod 16) = 12 (kerry 4) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 76 (mod 16) = 12 (kerry 4) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 76 (mod 16) = 12 (kerry 4) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 44 (mod 16) = 12 (kerry 4) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 44 (mod 16) = 10 (kerry 2) = 10$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$ $= (1 \times 4)_{1k} 4 \times 19 = 10 (kerry 1) (2)$	(102 - (1 0))	
$= 2 \times 7 + 1 \times 7 + 6 \times 7 + 3 \times 7$ $= (780)_{16}$ $= (780)_{16}$ $= (A B (A)_{16} A)_{16} A(10) + 16 = 26 - 15 = 11 (mod 16) = 11 = B$ $= (2 \times 3 F)_{16} 11 - 3 = 8 (mod 16) = 8$ $= (8 - 3 \times 5)_{16} 11 - 3 = 8 (mod 16) = 8$ $= (8 - 3 \times 5)_{16} 11 - 3 = 8 (mod 16) = 8$ $= (8 - 3 \times 5)_{16} 11 - 3 = 8 (mod 16) = 8$ $= (8 - 3 \times 5)_{16} 11 - 3 = 8 (mod 16) = 8$ $= (1 \times 4)_{16} 11 - 3 = 8 (mod 16) = 12 (kerry 4) (12)$ $= (1 \times 4)_{16} 14 + 14 (mod 16) = 12 (kerry 4) (12)$ $= (1 \times 4)_{16} 14 + 14 (mod 16) = 12 (kerry 4) (12)$ $= (1 \times 4)_{16} 14 + 14 (mod 16) = 12 (kerry 4) (12)$ $= (1 \times 4)_{16} 14 + 14 + 14 (mod 16) = 12 (kerry 4) (12)$ $= (1 \times 4)_{16} 14 + 14 + 14 + 14 + 16 + 16 + 16 + 16 +$	7LL = (1 H 6/16	1.2 Advances of the
$= 2 \times 7 + 1 \times 7 + 6 \times 7 + 3 \times 7$ $= (780)_{16}$ $= (780)_{16}$ $= (A B (A)_{16} A)_{16} A(10) + 16 = 26 - 15 = 11 (mod 16) = 11 = B$ $= (2 \times 3 F)_{16} 11 - 3 = 8 (mod 16) = 8$ $= (8 - 3 \times 5)_{16} 11 - 3 = 8 (mod 16) = 8$ $= (8 - 3 \times 5)_{16} 11 - 3 = 8 (mod 16) = 8$ $= (8 - 3 \times 5)_{16} 11 - 3 = 8 (mod 16) = 8$ $= (8 - 3 \times 5)_{16} 11 - 3 = 8 (mod 16) = 8$ $= (1 \times 4)_{16} 11 - 3 = 8 (mod 16) = 12 (kerry 4) (12)$ $= (1 \times 4)_{16} 14 + 14 (mod 16) = 12 (kerry 4) (12)$ $= (1 \times 4)_{16} 14 + 14 (mod 16) = 12 (kerry 4) (12)$ $= (1 \times 4)_{16} 14 + 14 (mod 16) = 12 (kerry 4) (12)$ $= (1 \times 4)_{16} 14 + 14 + 14 (mod 16) = 12 (kerry 4) (12)$ $= (1 \times 4)_{16} 14 + 14 + 14 + 14 + 16 + 16 + 16 + 16 +$		14
$= 2 \times 7 + 1 \times 7 + 6 \times 7 + 3 \times 7$ $= (780)_{16}$ $= (780)_{16}$ $= (A B (A)_{16} A)_{16} A(10) + 16 = 26 - 15 = 11 (mod 16) = 11 = B$ $= (2 \times 3 F)_{16} 11 - 3 = 8 (mod 16) = 8$ $= (8 - 3 \times 5)_{16} 11 - 3 = 8 (mod 16) = 8$ $= (8 - 3 \times 5)_{16} 11 - 3 = 8 (mod 16) = 8$ $= (8 - 3 \times 5)_{16} 11 - 3 = 8 (mod 16) = 8$ $= (8 - 3 \times 5)_{16} 11 - 3 = 8 (mod 16) = 8$ $= (1 \times 4)_{16} 11 - 3 = 8 (mod 16) = 12 (kerry 4) (12)$ $= (1 \times 4)_{16} 14 + 14 (mod 16) = 12 (kerry 4) (12)$ $= (1 \times 4)_{16} 14 + 14 (mod 16) = 12 (kerry 4) (12)$ $= (1 \times 4)_{16} 14 + 14 (mod 16) = 12 (kerry 4) (12)$ $= (1 \times 4)_{16} 14 + 14 + 14 (mod 16) = 12 (kerry 4) (12)$ $= (1 \times 4)_{16} 14 + 14 + 14 + 14 + 16 + 16 + 16 + 16 +$		
$= 2 \times 7 + 1 \times 7 + 6 \times 7 + 3 \times 7$ $= (780)_{16}$ $= (780)_{16}$ $= (A B (A)_{16} A)_{16} A(10) + 16 = 26 - 15 = 11 (mod 16) = 11 = B$ $= (2 \times 3 F)_{16} 11 - 3 = 8 (mod 16) = 8$ $= (8 - 3 \times 5)_{16} 11 - 3 = 8 (mod 16) = 8$ $= (8 - 3 \times 5)_{16} 11 - 3 = 8 (mod 16) = 8$ $= (8 - 3 \times 5)_{16} 11 - 3 = 8 (mod 16) = 8$ $= (8 - 3 \times 5)_{16} 11 - 3 = 8 (mod 16) = 8$ $= (1 \times 4)_{16} 11 - 3 = 8 (mod 16) = 12 (kerry 4) (12)$ $= (1 \times 4)_{16} 14 + 14 (mod 16) = 12 (kerry 4) (12)$ $= (1 \times 4)_{16} 14 + 14 (mod 16) = 12 (kerry 4) (12)$ $= (1 \times 4)_{16} 14 + 14 (mod 16) = 12 (kerry 4) (12)$ $= (1 \times 4)_{16} 14 + 14 + 14 (mod 16) = 12 (kerry 4) (12)$ $= (1 \times 4)_{16} 14 + 14 + 14 + 14 + 16 + 16 + 16 + 16 +$	3) Convert (2163/7 to be	ye lo
$= (780)_{10}$ $= (780)_{10}$ $A = (A = B = A)_{10}$ $A(10) + 16 = 26 - 15 = 11 (mod 16) = 11 = B$ $= (2 = 8 = 3 = F)_{10}$ $= 11 - 3 = 8 (mod 16) = 8$ $= (8 = 3 = 8 = 5)_{10}$ $= 11 - 3 = 8 (mod 16) = 8$ $= (8 = 3 = 8 = 5)_{10}$ $= 11 - 3 = 8 (mod 16) = 8$ $= (1 = 4)_{10}$ $=$	$= 2 \times 7^{3} + 1 \times 7 + 6 \times 7 + 3$	3×7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	= (180)10	and the second
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	
$ \frac{(2 \ 8 \ 3 \ F)}{(8 \ 3 \ 8 \ B)} = \frac{(1-3=8 \ (mod 16)=8)}{(1-3=8 \ (mod 16)=8)} $ $ \frac{(1-3)=8 \ (mod 16)=8}{(1-3)=8} = \frac{(1-3)=8}{(1-3)=8} = (1-3$		
	$\frac{4}{A} \left(A B Q A \right)_{16}$	$A(10) + 16 = 26 - 15 = 11 \pmod{16} = 11 = B$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(\gamma \otimes \gamma E)$	11-3=8 (mud 16)=8
(8 3 8 B) 16 $(8 3 8 B) 16$ $(8 3 8 B) 16$ $(1 4) 16$ $(1 4) 16$ $(1 4) 16$ $(1 4) 16$ $(1 4) 16$ $(1 4) 16$ $(1 4) 16$ $(1 2) 16$		
$\frac{5)^{-2} O(A B, 3)_{16}}{(1 4)^{16}} = \frac{3 + 16 = 19}{(4 \times 19 = 76 \pmod{16}) = 12 \binom{4}{(4 \times 19 \times 19)}} = \frac{1676}{64}$ $\frac{12}{(1 4)^{16}} = \frac{12 \binom{4}{(4 \times 19 \times 19)}}{(12)} = \frac{12}{(12)} \frac{(4 \times 19 \times 19)}{(12)} = \frac{12}{(12)} \frac{12}{(12)}$ $\frac{12}{(12)} = \frac{12}{(12)} \frac{12}{(12)} \frac{12}{(12)} = \frac{12}{(12)} \frac{12}{(12)} \frac{12}{(12)} \frac{12}{$	(838B)10	
$\frac{5)^{-2} O(A B, 3)_{16}}{(1 4)^{16}} = \frac{3 + 16 = 19}{(4 \times 19 = 76 \pmod{16}) = 12 \binom{4}{(4 \times 19 \times 19)}} = \frac{1676}{64}$ $\frac{12}{(1 4)^{16}} = \frac{12 \binom{4}{(4 \times 19 \times 19)}}{(12)} = \frac{12}{(12)} \frac{(4 \times 19 \times 19)}{(12)} = \frac{12}{(12)} \frac{12}{(12)}$ $\frac{12}{(12)} = \frac{12}{(12)} \frac{12}{(12)} \frac{12}{(12)} = \frac{12}{(12)} \frac{12}{(12)} \frac{12}{(12)} \frac{12}{$	L L	
$\frac{4}{4} \times \frac{(1 \times 4)}{4} \times \frac{4}{4} \times \frac{16}{16} = 76 \pmod{16} = 12 \pmod{4} \qquad (12)$ $\frac{2}{4} \times \frac{16}{4} \times \frac{16}{44} = 44 \pmod{16} = 12 \pmod{4} \qquad (12)$ $\frac{12}{40+4} = 44 \pmod{16} = 12 \pmod{2} \qquad (12)$ $\frac{32}{32}$ $\frac{16}{40+2} = 42 \pmod{16} = 10 \pmod{2} \qquad (12)$ $\frac{32}{12}$ $\frac{16}{40+2} = 42 \pmod{16} = 10 \pmod{2} \qquad (12)$ $\frac{32}{12}$ $\frac{16}{40+2} = 42 \pmod{16} = 10 \pmod{2} \qquad (12)$		4
$\frac{4 \times 19}{16} = 76 \pmod{16} = 12 \pmod{4} $ $\frac{12}{12}$ $\frac{2}{12} = 4 \times 10^{-1} = 44 \pmod{16} = 12 \pmod{4} $ $\frac{12}{12}$ $\frac{12}{12} = 40 + 2 = 42 \pmod{16} = 12 \pmod{2} $ $\frac{32}{12}$ $\frac{12}{12} = 40 + 2 = 42 \pmod{16} = 10 \pmod{2} $ $\frac{32}{12}$ $\frac{12}{12} = 10 \pmod{16} $ $\frac{10}{19} = 10 - 10 - 10 + 10 + 10 + 10 + 10 + 10 +$	5) $^{2}0(A B 3)_{16}$	
$\frac{2}{4} \begin{array}{c} A \\ C \\ A \\ B \\ \hline A \\ \hline B \\ \hline A \\ \hline B \\ \hline \end{array} \begin{array}{c} 40 \\ -44 \\ -44 \\ -44 \\ -44 \\ -44 \\ -44 \\ -44 \\ -44 \\ -44 \\ -44 \\ -44 \\ -44 \\ -44 \\ -44 \\ -10 \\ -12 \\ -10$		4×110 - 71 (m +11/1) = 10 (Kere H) (12)
$\frac{2}{A} = \frac{2}{C} = \frac{4}{40 + 4} = \frac{44}{(mvel 16)} = 12 - \frac{12}{12} = \frac{32}{12}$ $\frac{1}{A} = \frac{3}{B} = \frac{3}{12} = \frac{1}{12} = \frac{1}{$		
10 E E C) B+A = 21 (mod 1b) 10 42	2 A C C	$40+9 = 44 \pmod{16} = 12 \pmod{2}$
10 E E C) B+A = 21 (mod 1b) 10 42	10 12 2 0	$40+2 = 42 \pmod{16} = 10 (\operatorname{carm} 2) \frac{52}{12}$
	<u> </u>	2
	(P 5 F C)	