Sheikh Abdul Raheem @ 12

1. Convert (321) ${ }_{10}$ to base 7 Solution: We repeatedly divide by 7 until the quotient is zero:

	Quotient		Remainder
$321 \div 7=$	45	+	6
$45 \div 7=$	6	+	3
$6 \div 7=$	0	+	6

By taking the remainders in reverse order, we find that: $(321)_{10}=(636)_{7}$
2. Convert $(214)_{10}$ to base 8 Solution: We repeatedly divide by 8 until the quotient is zero:

	Quotient		Remainder
$214 \div 8=$	26	+	6
$26 \div 8=$	3	+	2
$3 \div 8=$	0	+	3

By taking the remainders in reverse order, we find that: $(214)_{10}=(326)_{8}$
3. Convert $(234)_{5}$ to base 10

Moving from left to right, we have:
$(234)_{5}=\left(2 \cdot 5^{2}\right)+\left(3 \cdot 5^{1}\right)+\left(4 \cdot 5^{0}\right)=50+15+4=(69)_{10}$
4. Working in base 8 , find $267 \cdot 23$

	Carry	Quotient
	$\begin{gathered} 267 \\ 23 \end{gathered}$	multiplicand multiplier
	25	$7 \cdot 3$
+	160	+7.20
+	220	$+60 \cdot 3$
+	1400	$+60 \cdot 20$
+	600	+200.3
+	4000	$+200 \cdot 20$
	6625	product

> The student here used this kind of multiplication $23.267=(20+3)(200+60+$ $7)=3.200+3.60+3.7+20.200+20.60+$ $20.7=($ now add and multiply mod 8 , so write down the remainder (mod 8$)$ and carry the quotient $)=(6625) _8 \ldots \quad$ I guess this method is LONG
5. Working in base 16, find $F A B 2-987 E$

Tip: Borrow the base
$F A B 2-987 E=(F 000-9000)+(A 00-800)+(A 0-70)+(18-E)=6234$

	FAB2	minuend
-	987 E	subtrahend
	6234	difference

HW $18 / 912018$ section 13

1) Convert 326 to base 8 .
step 1: Divicle until quotient $=0$.

$\boxed{40}$	5	0	< 5 top
$8 \sqrt{326}$	$\frac{8}{40}$	$8 \sqrt{5}$	
$\frac{320}{6}$	$\frac{40}{0}$	$\frac{0}{5}$	

Step 2: read remainders from right to left.

$$
326=(506)_{8}
$$

2) Convert 422 to base 16

26	1	0	estop
$\frac{162}{422}$	$\frac{16}{26}$	$\frac{16}{1}$	$\frac{16}{6}$
$\frac{416}{10}$	$\frac{16}{1}$		

$$
422=(1 A 6)_{16}
$$

3) Convert (2163), to base 10

$$
\begin{aligned}
& =2 \times 7^{3}+1 \times 7^{2}+6 \times 7^{1}+3 \times 7^{0} \\
& =(780)_{10}
\end{aligned}
$$

